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Averaging dynamics
G = (V, E) (undirected) graph ,

u

v

Nodes represent socio-economic agents/sensors,

Edges denote friendship/communication link

yv ∈ R initial opinion (measure) of node v

Averaging dynamics:{
xv (t + 1) = 1

2xv (t) + 1
2dv

∑
u:(u,v)∈E xu(t)

xv (0) = yv

where dv is the degree of node v .



Averaging dynamics

{
xv (t + 1) = 1

2xv (t) + 1
2dv

∑
u:(u,v)∈E xu(t)

xv (0) = yv

In a compact form x(t + 1) = Px(t).

This yields x(t) = Pty .

Asymptotics: Pt →?



Stochastic matrices

P ∈ RV×V above is an example of a stochastic matrix: Puv ≥ 0,∑
v Puv = 1 for all u ∈ V . P1 = 1.

Given P, we can consider the underlying graph GP = (V, EP) where
V is the set of nodes and where the set of edges is given by
EP := {(u, v) ∈ V × V | Puv > 0}
Remarkably, some of the key properties of P responsible for the
transient and asymptotic behavior of Pt are determined by the
connectivity properties of the underlying graph GP .

GP is said to be strongly connected if for any pair of vertices u 6= v
in V there is a path in GP connecting u to v .



Perron-Frobenius theorem

Theorem
Assume that P ∈ RV×V is such that GP is strongly connected and
Puu > 0 for at least one node u ∈ V . Then,

1. 1 is an algebraically simple eigenvalue of P.

2. There exists a (unique) probability vector π ∈ RV (πv > 0 for
all v and

∑
v πv = 1) s.t. π∗P = π∗.

3. All the remaining eigenvalues of P are of modulus < 1.

Consequence: Pt → 1π∗ for t → +∞. This yields

lim
t→+∞

x(t) = lim
t→+∞

Ptx(0) = 1(π∗x(0))

In other terms dynamics leads asymptotically to a consensus: all
agents’ state converging to the common value π∗x(0), called
consensus point which is a convex combination of the initial states
with weights given by the invariant probability components.



Average consensus

If π is the uniform vector (i.e. πu = |V|−1 for all u), the common
asymptotic value is simply the arithmetic mean of the initial states.

In this case all agents equally contribute to the final common
state: average consensus.

This uniformity condition amounts to assume that 1∗P = 1
∗,

namely that also columns of P sum to 1: a sufficient condition for
this being that P is symmetric.



Applications

In many applications, uniformity is necessary and is enforced in the
model. Indeed, the distributed computation of the arithmetic mean
is an important step to solve estimation problems for sensor
networks.

Specific example:

I N sensors deployed in a certain area;

I Each of them makes a noisy measurement of a physical
quantity x : yv = x + ωv where ωv are i.i.d. zero mean
Gaussian noise

I Optimal mean square estimator: x̂ = N−1
∑

v yv .

More sophisticated estimation problems: quantity to be estimated
is time-varying, sensors may have different performances

Other fields of application: opinion dynamics, computer load
balancing, control of cooperative autonomous vehicles



Random walks on graphs

Stochastic matrices owe their name to their use in probability.
Indeed, given a stochastic matrix P ∈ RV×V , the term Pvw can be
interpreted as the probability of making a transition from state v
to state w : you can imagine to be sitting at state v and to walk
along one of the available outgoing edges from v according to the
various probabilities Pvw . In this way you construct what is called
a random walk on the underlying graph G.

The case of uniform transition probabilities Pvw = 1
dv

for all w
such that (w , v) ∈ E is said to be the simple random walk on G.

G connected undirected ⇒ πv = dv∑
w∈V dw

is the invariant

probability (check this!)



The rate of convergence
Basic linear algebra allows to study the rate of convergence to
consensus: it will be dictated by the largest in modulo among the
eigenvalues of P except 1; precisely,

Theorem
Let P ∈ RV×V be a stochastic matrix such that GP is strongly
connected and Puu > 0 for some u. Consider all its eigenvalues µi
but 1 and put ρ2 = max{|µi | < 1}. Then, for every ε > 0 there
exists a constant Cε such that

||(Pt − 1π∗)x0||2 ≤ Cε(ρ2 + ε)t ||x0||2 for all t .

The parameter ρ2, introduced in the statement of the proposition
above, is also called the second eigenvalue of P, and the difference
1− ρ2 the spectral gap of P.

The above result essentially says that convergence to consensus
happens exponentially fast as ρt2.



Average dynamics with stubborn agents

We now investigate consensus dynamics models where some of the
agents do not modify their own state (stubborn agents).

These models are of interest in socio-economic models and also in
vehicle rendezvous problems where certain vehicles want to remain
fixed and make the other gather around them

Consider a symmetric connected graph G = (V, E).

We assume a splitting V = S ∪R: agents in S are stubborn agents
not changing their state, agents in R are regular agents.

Let P ∈ RV×V be a stochastic matrix such that, for u 6= v

Puv = 0 ⇔ (v , u) 6∈ E or u ∈ S (1)

Dynamics of opinions: x(t + 1) = Px(t).



Average dynamics with stubborn agents
Order elements in V in such a way that elements in R come first:

P =

[
Q11 Q12

0 I

]
Splitting accordingly x(t) = (xR(t), xS(t)) ∈ RV

xR(t + 1) = Q11xR(t) + Q12xS(t)
xS(t + 1) = xS(t)

Q11 is asymptotically stable: (Q11)t → 0.

Henceforth, xR(t)→ xR(∞) for t → +∞ and

xR(∞) = Q11xR(∞) + Q12xS(0)

which is equivalent to

xR(∞) = (I − Q11)−1Q12xS(0)

P stochastic implies that asymptotic opinions of regular agents
are convex combinations of the opinions of stubborn agents.



The electrical network interpretation

Assume G = (V, E) undirected and think of edges as electrical
resistances having resistance equal to 1

I η ∈ RV currents flowing into the network.
∑

v ηv = 0,

I Φ(u,v) current along the edge (u, v),

I Wu voltage at node u.

I Kirchoff law:
∑

v Φ(u,v) = ηu

I Ohm’s law: Wv −Wu = Φ(u,v)

Consequence:

(I − P)W = D−1G η

where P is the SRW on G and DG is diagonal with (DG)vv = dv .



The electrical network interpretation

(I − P)W = D−1G η

P coincide with Q in the upper part!

(I − P)

(
xR(∞)
xS(0)

)
=

(
0
θ

)
This implies that xR(∞) can be interpreted as voltages at the
regular nodes when stubborn nodes are kept at fixed voltage!

Techniques of electrical circuits can be used to compute or
estimate asymptotic opinions.


